Ionic Liquid-Based Fluorescein Colorimetric pH Nanosensors.

نویسندگان

  • Susmita Das
  • Paul K S Magut
  • Sergio L de Rooy
  • Farhana Hasan
  • Isiah M Warner
چکیده

A novel pH sensitive, colorimetric ionic liquid nanosensor based on phosphonium salts of fluorescein is reported. Herein, fluorescein salts of various stoichiometries were synthesized by use of a trihexyltetradecylphosphonium cation [TTP]+ in combination with dianionic [FL]2- and monoanionic [FL]- fluorescein. Nanomaterials derived from these two compounds yielded contrasting colorimetric responses in neutral and acidic environments. Variations in fluorescence spectra as a function of pH were also observed. Examination of TEM and DLS data revealed significant expansion in the diameter of [TTP]2[FL] nanodroplets in acidic environments of variable pHs. A similar trend was also observed for [TTP][FL] nanoparticles. The pH dependent colorimetric and other optical properties of these nanomaterials are attributed to alterations in molecular orientations and stacking as suggested by measuring the absorption, fluorescence, and zeta potential. Since the pH is an important indicator for many diseases, including cancer, these nanosensors are considered to be potential candidates for biomedical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WEARABLE MICRO-FLUIDIC pH SWEAT SENSING DEVICE BASED ON COLORIMETRIC IMAGING TECHNIQUES

In this paper a wearable electronic-free micro-fluidic device for the continuous monitoring of pH in sweat during exercise is described. The sensing capability is based on ionogels, ionic liquid hydrogels, containing pH sensitive dyes capable of reporting pH activity in the range from 3 to 10. Previously, we reported a flexible micro-fluidic barcode capable of measuring the pH of sweat in real ...

متن کامل

A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments.

Optical pH nanosensors have been applied for monitoring intracellular pH in real-time for about two decades. However, the pH sensitivity range of most nanosensors is too narrow, and measurements that are on the borderline of this range may not be correct. Furthermore, ratiometric measurements of acidic intracellular pH (pH < 4) in living cells are still challenging due to the lack of suitable n...

متن کامل

Temperature and pH triggered release characteristics of water/fluorescein from 1-ethyl-3-methylimidazolium ethylsulfate based ionogels.

A crosslinked poly(N-isopropylacrylamide) ionogel encapsulating an ionic liquid exhibits improved transmittance properties, enhanced water uptake/release, greater thermal actuation behaviour and distinct solvatomorphology over its hydrogel equivalent. It was also found that the rate of release of fluorescein pre-loaded into membranes was considerably enhanced for ionogels compared to equivalent...

متن کامل

Preparation of reversible colorimetric temperature nanosensors and their application in quantitative two-dimensional thermo-imaging.

Reversible colorimetric temperature nanosensors were prepared using a very simple precipitation method to encapsulate two color luminescent dyes. These nanosensors presented obvious reversible temperature response and enabled both rapid colorimetric temperature estimation using the eyes and quantitative two-dimensional thermo-imaging. Heat-exchange induced fluid motion was, for the first time, ...

متن کامل

Ionic Liquid Based Dispersive Liquid Liquid Microextraction and Enhanced Determination of the Palladium in Water, Soil and Vegetable Samples by FAAS

In this study, we combined Ionic Liquid-based Dispersive Liquid Liquid Micro Extraction (IL-DLLME) with FAAS for determining the palladium in different real samples at the trace level. 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF6] ionic liquid and 1-(2-pyridylazo) 2-naphthol (PAN), were chosen as the extraction solvent and the chelating agent, respectively. The hydr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RSC advances

دوره 3 43  شماره 

صفحات  -

تاریخ انتشار 2013